calculating
 OEE - SAMPLE CALCULATION:

In a 480 minute shift :
On a machine rated at 100 products output per minute
Maximum output $=480$ mins $\times 100$ units $=48000$ units

Shift info: \quad| Output (Good Production) | $=32000$ units |
| :--- | :--- |
| Speed | $=98$ units per minute |
| Planned downtime | $=82 \mathrm{mins}$ |
| Bottleneck loss due to B/down | $=30 \mathrm{mins}$ |
| Rejects (in process) | $=1255 \mathrm{in} 8 \mathrm{hr}$ shift |

Output (OEE) $=32000 / 48000=\underline{66.7 \%}$
$480 \mathrm{mins} \times 66.67 \%=320 \mathrm{mins}$, therefore Total Loss $=160 \mathrm{mins}$

SIX LOSS CALCULATIONS:

Speed loss
Max theoretical units possible at actual speed $=98 \times 480=47040$
$=(32000 / 47040)-(32000 / 48000)=$
$68.03 \%-66.67 \%=1.36 \%$
$480 \times 1.36 \% \quad=6.53 \mathrm{mins} / 480=(1.36 \%)$
Planned downtime
$=82$ mins $/ 480=(17.08 \%)$

Breakdown
$=30$ mins $/ 480 \quad=(6.25 \%)$
Rejects $=1255 / 98$ (actual running speed)
$=12.81$ mins $/ 480=(2.67 \%)$
Minor stops $=480-320-6.53-82-30-12.81$
$=28.66$ mins $/ 480=(5.97 \%)$
Total loss $=160 \mathrm{mins}=(33.33 \%)$

OEE CALCULATIONS: (Time in Minutes)					
Production time	$=480$ Time less availability loss			$=368$ Time less performance loss $=333$	
Availability Loss	Performance Loss		Quality Loss		
Planned downtime $=82$	Speed loss		$=6.53$ Rejects on start up		=0
Breakdowns	=30Minor stops (<5mins)		$=28.66$	Rejects in process	$=12.81$
Total	$=112 \mathrm{Total}$	$1 \quad=35.19$		Total	$=12.81$
AVAILABILITY	PERFORMANCE			QUALITY	OEE
$(368 / 480)=77 \%$	$(333 / 368)=90 \%$			$(320 / 333)=96 \%$	$=0.77 \times 0.9 \times 0.96$

